Regulation of histone acetylation in the hippocampus of chronically stressed rats: a potential role of sirtuins.
نویسندگان
چکیده
The hippocampus is a brain region that is particularly susceptible to structural and functional changes in response to chronic stress. Recent literature has focused on changes in gene transcription mediated by post-translational modifications of histones in response to stressful stimuli. Chronic variable stress (CVS) is a rodent model that mimics certain symptoms of depression in humans. Given that stress exhibits distinct effects on the cells of the sub-regions of the hippocampus, we investigated changes in histone acetylation in the CA1, CA3, and dentate gyrus (DG) of the hippocampus in response to CVS. Western blotting revealed a significant decrease in acetylation of histone 4 (H4) at Lys12 in CA3 and DG of CVS animals compared to control animals. Furthermore, phospho-acetyl H3 (Lys9/Ser10) was also decreased in the CA3 and DG regions of the hippocampus of CVS animals. In addition, since histone deacetylases (HDACs) contribute to the acetylation state of histones, we investigated the effects of two HDAC inhibitors, sodium butyrate, a class I and II global HDAC inhibitor, and sirtinol, a class III sirtuin inhibitor, on acetylation of histone 3 (H3) and H4. Application of HDAC inhibitors to hippocampus slices from control and CVS animals revealed increased histone acetylation in CVS animals, suggesting that levels of histone deacetylation by HDACs were higher in the CVS animals compared to control animals. Interestingly, histone acetylation in response to sirtinol was selectively increased in the slices from the CVS animals, with very little effect of sirtuin inhibitors in slices from control animals. In addition, sirtuin activity was increased specifically in CA3 and DG of CVS animals. These results suggest a complex and regionally-specific pattern of changes in histone acetylation within the hippocampus which may contribute to stress-induced pathology.
منابع مشابه
P 110: Evaluating the Role of Histone Hyper Acetylation in Induction of Neuroinflammation
Microglia is the effector cell of the innate immune system in central nervous system (CNS). These cells mediate inflammatory responses in injuries. Besides external factors, microglial function is also controlled by internal factors, including epigenetic regulations. Mechanisms of epigenetic regulation mainly consist of DNA methylation, histone modifications and use of non-coding RNAs. Recent s...
متن کاملThe effect of aspirin on the interaction of histone 05 and 05-DNA
The linker histones (H1 or H5) which play a key role in the folding of chromatin, are general repressors of gene expression. Nuclei of the mature chicken erythrocytes (and in some mammalian cells) contain both of them. Although the interaction of H5 with DNA is stronger than that of H1, it does not prevent the transcription of some erythroid-specific genes. It has been shown that some modificat...
متن کاملThe emerging therapeutic potential of sirtuin-interacting drugs: from cell death to lifespan extension.
Acetylation of chromatin-interacting proteins is central to the epigenetic regulation of genome architecture and gene expression. Chemicals that modulate the acetylation of nuclear proteins have proved instrumental in experimental models of several human diseases. Sirtuins represent a new class of evolutionary conserved histone deacetylases, originally identified in yeast, that have emerging pa...
متن کاملRepression of contexual fear memory induced by isoflurane is accompanied by reduction in histone acetylation and rescued by sodium butyrate.
BACKGROUND Isoflurane produces amnesia in mice during contextual fear conditioning (CFC) trials. Histone acetylation is a form of chromatin modification involved in the transcriptional regulation underlying memory formation. We investigated whether isoflurane-induced repression of contextual fear memory is related to altered histone acetylation in the hippocampus, and whether it can be rescued ...
متن کاملSpecific functions for the fission yeast Sirtuins Hst2 and Hst4 in gene regulation and retrotransposon silencing.
Expression profiling, ChiP-CHIP and phenotypic analysis were used to investigate the functional relationships of class III NAD(+)-dependent HDACs (Sirtuins) in fission yeast. We detected significant histone acetylation increases in Sirtuin mutants at their specific genomic binding targets and were thus able to identify an in vivo substrate preference for each Sirtuin. At heterochromatic loci, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience
دوره 174 شماره
صفحات -
تاریخ انتشار 2011